Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2612, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521786

RESUMO

Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable these multifaceted roles, the catalytic subunit p110 utilizes the multi-domain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, its product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and their relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains AP2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and increase both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Domínios de Homologia de src , Movimento Celular , Endocitose
2.
Nat Commun ; 14(1): 6459, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833326

RESUMO

The intrinsic complexity of many mesoscale (10-100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.


Assuntos
DNA , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , DNA/química , Microscopia de Força Atômica , Estresse Mecânico
3.
JACS Au ; 3(5): 1435-1442, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234113

RESUMO

The progress of the scaffolded DNA origami technology has enabled the construction of various dynamic nanodevices imitating the shapes and motions of mechanical elements. To further expand the achievable configurational changes, the incorporation of multiple movable joints into a single DNA origami structure and their precise control are desired. Here, we propose a multi-reconfigurable 3 × 3 lattice structure consisting of nine frames with rigid four-helix struts connected with flexible 10-nucleotide joints. The configuration of each frame is determined by the arbitrarily selected orthogonal pair of signal DNAs, resulting in the transformation of the lattice into various shapes. We also demonstrated sequential reconfiguration of the nanolattice and its assemblies from one into another via an isothermal strand displacement reaction at physiological temperatures. Our modular and scalable design approach could serve as a versatile platform for a variety of applications that require reversible and continuous shape control with nanoscale precision.

4.
ACS Nano ; 16(10): 16608-16616, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178116

RESUMO

We address the problem of de novo design and synthesis of nucleic acid nanostructures, a challenge that has been considered in the area of DNA nanotechnology since the 1980s and more recently in the area of RNA nanotechnology. Toward this goal, we introduce a general algorithmic design process and software pipeline for rendering 3D wireframe polyhedral nanostructures in single-stranded RNA. To initiate the pipeline, the user creates a model of the desired polyhedron using standard 3D graphic design software. As its output, the pipeline produces an RNA nucleotide sequence whose corresponding RNA primary structure can be transcribed from a DNA template and folded in the laboratory. As case examples, we design and characterize experimentally three 3D RNA nanostructures: a tetrahedron, a triangular bipyramid, and a triangular prism. The design software is openly available and also provides an export of the targeted 3D structure into the oxDNA molecular dynamics simulator for easy simulation and visualization.


Assuntos
Nanoestruturas , RNA , Conformação de Ácido Nucleico , Nanotecnologia , Nanoestruturas/química , DNA/química
5.
iScience ; 25(5): 104292, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573202

RESUMO

The DNA origami technique is used to construct custom-shaped nanostructures that can be used as components of two-dimensional crystalline structures with user-defined structural patterns. Here, we designed an Mg2+-responsive hexagonal 3D DNA origami block with self-shape-complementary ruggedness on the sides. Hexagonal DNA origami blocks were electrostatically adsorbed onto a fluidic lipid bilayer membrane surface to ensure lateral diffusion. A subsequent increase in the Mg2+ concentration in the surrounding environment induced the self-assembly of the origami blocks into lattices with prescribed geometries based on a self-complementary shape fit. High-speed atomic force microscopy (HS-AFM) images revealed dynamic events involved in the self-assembly process, including edge reorganization, defect splitting, diffusion, and filling, which provide a glimpse into how the lattice structures are self-improved.

6.
Soft Matter ; 17(25): 6160-6167, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34085082

RESUMO

Reaction-diffusion systems are one of the models of the formation process with various patterns found in nature. Inspired by natural pattern formation, several methods for designing artificial chemical reaction-diffusion systems have been proposed. DNA is a suitable building block to build such artificial systems owing to its programmability. Previously, we reported a line pattern formed due to the reaction and diffusion of synthetic DNA; however, the width of the line was too wide to be used for further applications such as parallel and multi-stage pattern formations. Here, we propose a novel method to programme a reaction-diffusion system in a hydrogel medium to realise a sharp line capable of forming superimposed and cascaded patterns. The mechanism of this system utilises a two-segment polymerisation of DNA caused by hybridisation. To superimpose the system, we designed orthogonal DNA sequences that formed two lines in different locations on the hydrogel. Additionally, we designed a reaction to release DNA and form a cascade pattern, in which the third line appears between the two lines. To explain the mechanism of our system, we modelled the system as partial differential equations, whose simulation results agreed well with the experimental data. Our method to fabricate cascaded patterns may inspire combinations of DNA-based technologies and expand the applications of artificial reaction-diffusion systems.


Assuntos
DNA , Hidrogéis , Simulação por Computador , Difusão , Polimerização
7.
Chem Commun (Camb) ; 57(24): 2990-2993, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33587063

RESUMO

Intaking molecular information from the external environment is essential for the normal functioning of artificial cells/molecular robots. Herein, we report the design and function of a membrane nanopore using a DNA origami square tube with a cross-section of 100 nm2. When the nanopore is added to a giant vesicle that mimics a cell membrane, the permeation of large external hydrophilic fluorescent molecules is observed. Furthermore, the addition of up to four ssDNA strands enables size-based selective transport of molecules. A controllable artificial nanopore should facilitate the communication between the vesicle components and their environment.


Assuntos
DNA de Cadeia Simples/química , Nanoporos , Lipossomas Unilamelares/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal
8.
Bioconjug Chem ; 32(2): 311-317, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33475341

RESUMO

Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.


Assuntos
Movimento Celular , DNA/química , Nanoestruturas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
9.
Micromachines (Basel) ; 11(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142895

RESUMO

The invention of DNA origami has expanded the geometric complexity and functionality of DNA nanostructures. Using DNA origami technology, we develop a flexible multi-joint ring motif as a novel self-assembling module. The motif can connect with each other through self-complementary sequences on its segments. The flexible joints can be fixed in a straightened position as desired, thereby allowing the motif to take various shapes. We can adjust the number of flexible joints and the number of connectable segments, thereby enabling programmable self-assembly of the motif. We successfully produced the motif and evaluated several self-assembly patterns. The proposed multi-joint ring motif can provide a novel method for creating functional molecular devices.

10.
Angew Chem Int Ed Engl ; 59(15): 6230-6234, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944509

RESUMO

Making use of the programmability and structural flexibility of the DNA molecule, a DNA-origami nanoarm capable of undergoing large deformation is constructed. This DNA-origami nanoarm comprised serially repeated tension-adjustable modules, the cumulative actuation of which resulted in a large deformation of the arm structure, which transformed from a linear shape into an arched shape. Combining atomic force microscopy and theoretical analyses based on the mechanics of materials, we demonstrate that the degree of deformation can be systematically controlled by merely replacing a set of strands that is required for the actuation of the module. Moreover, by employing a G-quadruplex-forming sequence for the actuation, we could achieve reversible ion-induced contraction and relaxation of the nanoarm. The adjustability and scalability of this design could enable the production of DNA nanodevices that exhibit large deformation in response to external stimuli.

11.
Molecules ; 25(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861399

RESUMO

Investigations into the refolding of DNA origami leads to the creation of reconstructable nanostructures and deepens our understanding of the sustainability of life. Here, we report the refolding of the DNA origami structure inside a micron-sized compartment. In our experiments, conventional DNA origami and truss-type DNA origami were annealed and purified to remove the excess staples in a test tube. The DNA origami was then encapsulated inside of a micron-sized compartment of water-in-oil droplets, composed of neutral surfactants. The re-annealing process was then performed to initiate refolding in the compartment. The resulting 100-nm-sized DNA nanostructures were observed using atomic force microscopy (AFM), and the qualities of their structures were evaluated based on their shape. We found that the refolding of the DNA origami structure was favored inside the droplets compared with refolding in bulk solution. The refolded structures were able to fold even under "quick" one-minute annealing conditions. In addition, the smaller droplets (average diameter: 1.2 µm) appeared to be more advantageous for the refolding of the origamis than larger droplets. These results are expected to contribute to understanding the principles of life phenomena based on multimolecular polymer self-assembly in a micron-sized compartment, and for the production and maintenance of artificially designed molecules.


Assuntos
DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
12.
Chem Commun (Camb) ; 55(62): 9084-9087, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31287464

RESUMO

An isothermal amplification circuit for specific DNA molecules was implemented in giant unilamellar vesicles. Using this circuit, over 5000-fold amplification of output DNAs was achieved, and the amplification behaviour depended on the concentration of input signal DNAs in a cell-sized compartment. Moreover, initiation of the amplification by photo-stimulation was demonstrated.


Assuntos
DNA/análise , Lipossomas Unilamelares/química , DNA/síntese química , Técnicas de Amplificação de Ácido Nucleico , Tamanho da Partícula , Propriedades de Superfície
13.
Phys Rev E ; 97(5-1): 052617, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906997

RESUMO

We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.


Assuntos
DNA/química , DNA/metabolismo , Modelos Moleculares , Sequência de Bases , DNA/genética , Difusão , Polímeros/química
14.
Chembiochem ; 19(8): 873-876, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29399977

RESUMO

The most common way to fabricate DNA nanostructures is to mix individually synthesized DNA oligomers in one pot. However, if DNA nanostructures could be produced through enzymatic reactions, they could be applied in various environments, including in vivo. Herein, an enzymatic method developed to construct a DNA nanostructure from a simple motif called a T-motif is reported. A long, repeated structure was replicated from a circular template by rolling circle amplification and then cleaved into T-motif segments by restriction enzymes. These motifs have been successfully assembled into a ladder-like nanostructure without purification or controlled annealing. This approach is widely applicable to constructing a variety of DNA nanostructures through enzymatic reactions.


Assuntos
DNA/química , Enzimas/química , Nanotecnologia , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
15.
Small ; 13(41)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895291

RESUMO

A new kind of the Vernier mechanism that is able to control the size of linear assembly of DNA origami nanostructures is proposed. The mechanism is realized by mechanical design of DNA origami, which consists of a hollow cylinder and a rotatable shaft in it connected through the same scaffold. This nanostructure stacks with each other by the shape complementarity at its top and bottom surfaces of the cylinder, while the number of stacking is limited by twisting angle of the shaft. Experiments have shown that the size distribution of multimeric assembly of the origami depends on the twisting angle of the shaft; the average lengths of the multimer are decamer, hexamer, and tetramer for 0°, 10°, and 20° twist, respectively. In summary, it is possible to affect the number of polymerization by adjusting the precise shape and movability of a molecular structure.


Assuntos
DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica , Conformação de Ácido Nucleico
16.
Proc Natl Acad Sci U S A ; 114(28): 7228-7233, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652345

RESUMO

Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.


Assuntos
Citoesqueleto/metabolismo , DNA/química , Lipídeos/química , Lipossomos/química , Células Artificiais , Sistemas de Liberação de Medicamentos , Ácidos Graxos Monoinsaturados/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Pressão Osmótica , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Rodaminas/química , Estresse Mecânico , Fatores de Tempo
17.
Chem Commun (Camb) ; 53(55): 7716-7719, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28548145

RESUMO

We constructed a rotary DNA origami device and tested its stepping operation on a mica substrate by sequential strand displacement with four different sets of signal DNA strands. This work paves the way for building a variety of dynamic rotary DNA nanodevices which respond to multiple signals.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Silicatos de Alumínio/química , Técnicas Biossensoriais , Tamanho da Partícula , Rotação , Propriedades de Superfície
18.
Phys Chem Chem Phys ; 19(21): 13414-13418, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513698

RESUMO

We show electric control of unzipping and shearing dehybridization of a DNA duplex anchored to a hydrogel. Tensile force is applied by electrophoresing (25 V cm-1) gold nanoparticles pulling the DNA duplex. The pulled DNA strand is gradually released from the hydrogel. The unzipping release rate is faster than shearing; for example, 3-fold for a 15 base pair duplex, which helps to design electrically driven DNA devices.


Assuntos
Resinas Acrílicas/química , DNA/química , Hidrogéis/química , Nanopartículas Metálicas/química , Eletroforese , Ouro/química , Hibridização de Ácido Nucleico/efeitos dos fármacos
19.
Sci Robot ; 2(4)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157867

RESUMO

Rapid progress in nanoscale bioengineering has allowed for the design of biomolecular devices that act as sensors, actuators, and even logic circuits. Realization of micrometer-sized robots assembled from these components is one of the ultimate goals of bioinspired robotics. We constructed an amoeba-like molecular robot that can express continuous shape change in response to specific signal molecules. The robot is composed of a body, an actuator, and an actuator-controlling device (clutch). The body is a vesicle made from a lipid bilayer, and the actuator consists of proteins, kinesin, and microtubules. We made the clutch using designed DNA molecules. It transmits the force generated by the motor to the membrane, in response to a signal molecule composed of another sequence-designed DNA with chemical modifications. When the clutch was engaged, the robot exhibited continuous shape change. After the robot was illuminated with light to trigger the release of the signal molecule, the clutch was disengaged, and consequently, the shape-changing behavior was successfully terminated. In addition, the reverse process-that is, initiation of shape change by input of a signal-was also demonstrated. These results show that the components of the robot were consistently integrated into a functional system. We expect that this study can provide a platform to build increasingly complex and functional molecular systems with controllable motility.

20.
Phys Chem Chem Phys ; 18(18): 12576-81, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27091668

RESUMO

In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.


Assuntos
DNA/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Anisotropia , Microscopia de Força Atômica , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Polimerização , Compostos de Amônio Quaternário/química , Eletricidade Estática , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...